(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
double(x) → permute(x, x, a)
permute(x, y, a) → permute(isZero(x), x, b)
permute(false, x, b) → permute(ack(x, x), p(x), c)
permute(true, x, b) → 0
permute(y, x, c) → s(s(permute(x, y, a)))
p(0) → 0
p(s(x)) → x
ack(0, x) → plus(x, s(0))
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
plus(0, y) → y
plus(s(x), y) → plus(x, s(y))
plus(x, s(s(y))) → s(plus(s(x), y))
plus(x, s(0)) → s(x)
plus(x, 0) → x
isZero(0) → true
isZero(s(x)) → false
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
permute(s(x36500_1), y, a) →+ s(s(permute(x36500_1, ack(s(x36500_1), s(x36500_1)), a)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x36500_1 / s(x36500_1)].
The result substitution is [y / ack(s(x36500_1), s(x36500_1))].
(2) BOUNDS(n^1, INF)